Course Title and Code CS432 - Artificial Intelligence

I. Course Identification and General Information:

Course Title	Artificial Intelligence	Course Code	C\$432	Pre-requisite	MATH 329
Department	Computer Science	Course Level	10	Credit Hours	3(2+1)

II. Course Description/Topics: The following course topics will be covered.

Artificial Intelligence - Introduction :

What is Al. A brief history. The state of the art.

Intelligent Agents:

Agents and environments. Rationality. PEAS(Performance measure, Environment, Actuators, Sensors). Environment types Agent types.

Problem solving and search:

Problem-solving agents. Problem types. Problem formulation. Example problems. Basic search algorithms.

Informed search algorithms:

Best-first search. A* search. Heuristics

Local search algorithms :

Hill-climbing. Simulated annealing. Genetic algorithms.

Constraint Satisfaction Problems :

CSP examples. Backtracking search for CSPs. Problem structure and problem decomposition. Local search for CSPs.

Game playing :

Games. Perfect play : minimax decisions. a-β pruning. Resource limits and approximate evaluation. Games of chance. Games of imperfect information. Saudi Arabia

Planning :

Search vs. planning STRIPS operators Partial-order planning

First-order logic:

Why FOL. Syntax and semantics of FOL. Fun with sentences. Wumpus world in FOL.

Uncertainty :

Probability . Syntax and Semantics . Inference . Independence and Bayes' Rule.

Machine learning:

Classification by examples. Decision trees induction. Artificial Neural networks. Naïve Bayes Classifier. Unsupervised learning approach- clustering.

III. Course Outcomes: Summary of the main learning outcomes for students enrolled in the course.

- Describe the nature of AI using rational act and think concepts.
- Comparing and differentiate between the concepts of optimal reasoning/behavior and human-like reasoning/behavior.
- Describe a given problem domain using the characteristics of the environments in which a better intelligent agent design can be achieved.
- Comparisons between different search algorithms in terms of their efficiency, and the optimality.
- Experience with the concept of learning from the past to predict a better future.

IV. Required Text:

Artificial Intelligence: A Modern Approach(3rd Edition), Stuart Russell, and Peter Norvig.

V. References:

• Machine learning : A Probabilistic Perspective , Kevin P. Murphy